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We study the effective permeability of two-dimensional binary systems characterized by a network of
branching channels embedded in a uniform matrix material. Channels are assigned a higher permeability than
the surrounding matrix and, therefore, serve as preferential pathways for fluid migration. The channel networks
are constructed using a nonlooping invasion percolation model. We perform extensive numerical flow simula-
tions to determine the effective permeability tensor of channel-matrix systems with broadly varying network
properties. These computed effective permeabilities are then used to systematically investigate the factors that
control the permeability upscaling process. The upscaling framework adopted for this study is based on spatial
power averaging. We determine the scaling behavior of the averaging exponent � by analyzing its dependence
on three characteristic properties of the channel-matrix system: �i� the channel-matrix permeability contrast; �ii�
the fractal dimension of the channel network, df; and �iii� the average tortuosity of spanning paths on the
network backbone, �. The behavior of � and the corresponding component of effective permeability in each
principal direction �parallel and perpendicular to the network-spanning direction� are compared. The perme-
ability anisotropy ratio is shown to be a clear function of key system properties.

DOI: 10.1103/PhysRevE.73.026305 PACS number�s�: 47.56.�r, 64.60.Ak

I. INTRODUCTION

Disordered geologic media often contain connected paths
of high-permeability material that behave as preferred path-
ways for fluid flow and chemical migration. An active re-
search area in subsurface science is aimed at developing a
quantitative understanding of how these structural features
influence macroscale flow and transport phenomena �1–5�.

Percolation theory provides a useful framework for ana-
lyzing fluid-flow behavior in highly connected disordered
media. Many studies in the percolation literature have ex-
plored the dependence of macroscopic dynamical quantities,
such as effective permeability �or conductivity� �6,7� and
tracer travel times �8,9� on various geometrical properties of
percolation clusters. These investigations most often utilize
the incipient spanning cluster �critical percolation cluster� as
a representative structural model of the disordered porous
medium. Critical path analysis �CPA�, first proposed by Am-
begaokar et al. �10�, provides a basis for using a percolation
cluster at criticality to study macroscopic flow behavior. The
main argument supplied by CPA is that, in heterogeneous
systems characterized by a broad distribution of permeabili-
ties, the transport of fluids will be dominated by high-
permeability regions. If the distribution of permeability val-
ues is very broad, areas having a permeability less than the
critical value will not participate significantly in the trans-
port. Therefore, the system may be minimally represented by
a spanning percolation cluster that connects all locations
having a permeability at least as high as the critical value.
The dynamical model then involves flow across open bonds
�or occupied lattice sites� on the cluster, with no flow occur-
ring in the intercluster area, which is characterized by negli-
gible permeabilities.

Traditional random percolation models, often used to rep-
resent strongly disordered media, assume that the nature of
the spatial disorder is uncorrelated. In a site percolation prob-
lem, for example, this means the occupation probability for a

given lattice site is not related to the occupancy status of its
neighbor sites. The assumption of an uncorrelated or com-
pletely random medium tends to be justified for investiga-
tions of pore-scale dynamical processes. At the scale of in-
dividual pores, the degree of disorder �i.e., variability in pore
conductances� is generally quite high �11�, with negligible
spatial correlation between neighboring regions of the me-
dium. However, at larger length scales �e.g., field-scale sub-
surface systems on the order of tens to hundreds of meters�,
application of the random percolation model may no longer
be warranted �12�. This is due to the fact that, in many sub-
surface geologic environments, the distribution of hydraulic
properties �such as permeability� exhibits a significant
amount of structure. For example, in geologic systems where
material deposition was governed by fluvial processes, bur-
ied channel deposits commonly occur. Composed of coarse-
grained porous material, these channels often form continu-
ous high-permeability pathways that span large areas of the
subsurface �13,14�. This and many other examples illustrate
how processes active in the formation of geologic deposits
can impart key structural patterns on the resulting hydraulic
property distributions.

Recognizing the above geologic argument, some investi-
gators have used spatially correlated percolation as a more
realistic model for large-scale subsurface systems �15–18�.
By introducing long-range spatial correlations in the lattice
site occupation probabilities, critical percolation networks
generated using this approach can better represent the geom-
etry of high-permeability geobodies. As a result, spatially
correlated networks may yield significantly improved esti-
mates of macroscopic properties for many field settings. Re-
gardless of the particular assumptions invoked concerning
spatial correlation, the representation of porous media struc-
ture using a critical percolation network generally requires a
sufficiently broad permeability distribution, in keeping with
CPA.
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In this paper, we consider an alternative percolation-based
structural model of the porous medium that does not rely on
the CPA argument. Our model is two dimensional �2D�, al-
though not limited to 2D, and consists of branching dendritic
channels embedded in a low-permeability matrix material.
The channel networks are generated using an invasion per-
colation algorithm. We focus on systems above the percola-
tion threshold that are characterized by multiple spanning
channels. For the purposes of this study, we assume a binary
permeability distribution; that is, we assign one uniform per-
meability value along the channels and a different, lower
value in the matrix area. Real geologic media are character-
ized by continuous rather than discrete �e.g., binary� hydrau-
lic property distributions. However, ample evidence suggests
that the permeability distribution in many sedimentary envi-
ronments is bimodal �19–21� and that matrix regions, al-
though less permeable, can significantly influence the flow
behavior. For these bimodal sedimentary regimes, simplified
models based on a binary permeability field can capture im-
portant characteristics of the fluid dynamics.

The channel-matrix conceptualization described in this
paper is a useful heuristic model for studying dynamical pro-
cesses in many natural systems that contain branching con-
duit geometries. Here, we consider porous subsurface envi-
ronments spanned by high-permeability channel networks
and focus our analysis on the effective permeability. By per-
forming detailed flow simulations, we investigate the depen-
dence of the effective permeability on key properties of the
channel-matrix system, including geometrical properties of
the channel network that are quantified using percolation
concepts.

The remainder of this paper is organized into four addi-
tional sections. In Sec. II, we describe our methods for gen-
erating the channel networks and for characterizing impor-
tant network properties that influence the flow behavior. In
Sec. III, we outline the numerical flow simulation technique
used to obtain an effective permeability for each channel-
matrix system, and we present an upscaling framework to
facilitate interpretation of the computed effective permeabili-
ties. Section IV, the results section, contains our analysis of
the sensitivity of effective permeability, and the fluid-flow
behavior in general, to variations in key system properties.
Finally, we discuss our conclusions in Sec. V.

II. CHANNEL NETWORK MODEL

A. Network generation

Our model for generating synthetic channel deposits is
based on the work of Stark �22�, who applied an invasion
percolation model with a nonlooping constraint to simulate
drainage networks. Stark and subsequent investigators �23�
demonstrated that this model reproduces the observed fractal
scaling properties of natural channel networks. We consider
2D site percolation on a square lattice. Implementation of the
percolation model is as follows. First, a substrate strength
value is assigned to each lattice site. Conceptually, the
strength value is intended to represent the combined influ-
ence of various physical properties �e.g., topography, soil,
and vegetation characteristics� on the likelihood of channel

development at a particular location. We assign strength val-
ues randomly from a normal distribution. Network growth is
initiated using one or more seed sites. Starting at the seed�s�,
neighboring sites with the lowest strength values are invaded
�occupied�. This process continues, with each new occupied
site being part of a connected path that includes the seed site,
until no additional growth is possible �Fig. 1�a��. The non-
looping condition is implemented by never invading a new
site that has occupied neighbors other than the source site
from which growth is proceeding. A key component of our
model is the specification of preferential growth factors that
bias network development in particular directions. This as-
pect of the model permits the generation of channels with
varying degrees of tortuosity, which is an important geo-
metrical property that influences subsurface flow dynamics.

Figure 1 illustrates how the original percolation network
is pruned to obtain the dendritic patterns that resemble natu-
ral channel networks. We use Strahler’s method �24� to iden-
tify the order of each stream segment on the network. Label-
ing stream orders provides a convenient basis for controlling
the proportion of channels in the channel-matrix system. We
define a threshold stream order in the development of each
channel network, such that all stream branches having an
order lower than the threshold are pruned. When a higher
threshold is specified, more extensive pruning occurs, result-
ing in a lower density of channels in the final system.

B. Characterization of key network properties

For each channel-matrix system evaluated in this study,
we quantify two key geometrical properties of the �pruned�
channel network that influence simulated flow behavior: �i�
the network fractal dimension and �ii� the average channel
tortuosity. We use the box-counting dimension to estimate
the fractal dimension of the channel network, df. Figures 1�c�
and 1�d� depict two networks with significantly different df
values. Also reported with Fig. 1 is the range of box sizes
used to compute df for the networks shown. The upper bound
on this range �i.e., maximum box size implemented in the
counting� represents a threshold with geometrical signifi-
cance. For grids composed of square elements above this
threshold size, all of the elements would be intersected by
some part of the channel network. Subregions within a par-
ticular network domain tend to exhibit fractal scaling as their
size increases beyond this identified threshold.

To calculate a meaningful tortuosity measure that captures
the effect of channel tortuosity on the flow behavior, we
focus on spanning paths that comprise the network back-
bone. The average spanning-path tortuosity computed for
each network is defined by

� �
1

B
�
i=1

B

�l/r�i �1�

where B is the total number of spanning paths on the back-
bone, r is the Euclidean distance between starting and ending
points on a given spanning path, and l is the path’s actual
distance. For loopless structures like the channel networks
discussed here, the chemical or shortest path between two
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boundary points represents the only path between those
points.

In Fig. 2, percolation backbones are delineated for two
channel networks characterized by different � values. The �
values for all networks considered in this study range from
1.27 to 1.81. Strictly speaking, the transport backbone that
we use to compute � is only defined as such when the matrix
permeability is zero. The structural model of interest in this
study is a binary medium in which matrix throughflow is
permitted. Nevertheless, we find the average spanning-path
tortuosity to be an important geometrical property of the
channel network. Intensive numerical simulations, the results
of which will be discussed in Sec. IV, provide compelling
evidence that � is a key metric and that variations in � have
a predictable influence on the effective permeability over a
broad range of channel-matrix permeability contrasts.

III. DETERMINATION OF EFFECTIVE PERMEABILITY

A. Flow simulation approach

We conducted detailed numerical simulations to deter-
mine the actual effective permeability for each channel-
matrix system. Each 2D simulated system involves the
steady-state, laminar flow of an incompressible fluid through
a porous medium, which is described by �25�

� · q = � · �K

�
� �� = 0, �2�

where q is the specific discharge, � is a fluid potential, � is
the dynamic viscosity of the fluid, and K is the permeability
of the medium. The potential gradient can be expressed as
��=��p+�gz�, where p is the fluid pressure, � is the fluid
density, g is the acceleration due to gravity, and z is eleva-
tion. We assume an incompressible fluid with constant den-
sity and viscosity. A complete description of the global ef-
fective permeability in our 2D channel-matrix systems
requires a tensor

Ke = 	Ke,xx 0

0 Ke,yy

 , �3�

where Ke,xx �Ke,yy� is the component of effective permeability
in the x �y� direction. Off-diagonal elements in the above
tensor are zero because the grid axes used to establish our
simulation domain �labeled in Fig. 2� are oriented along the
principal directions of anisotropy.

Specification of boundary conditions is necessary to ob-
tain a solution to the steady-state flow equation. Prior to
establishing these conditions and running the flow simula-
tion, we first augment each channel-matrix system with ho-
mogeneous buffer zones at the top and bottom �when deter-

FIG. 1. �a� Typical percolation network prior to pruning. Lattice size is 425�800. Network development was initiated using four seed
sites �marked by asterisks� along the bottom row. Unoccupied sites are shown in white. �b� Strahler stream orders for the same network.
Darkest lines represent the highest-order streams. �c� Pruned network with lowest two stream orders removed. Fractal dimension �df� of this
network is 1.41, estimated using box sizes �side lengths� ranging from 2 to 12. �d� Pruned network with three orders removed. Fractal
dimension �df� is 1.26, with box sizes ranging from 2 to 20. The thick horizontal line shown in �c� and �d� is the upper boundary of the
computational domain used for flow simulation. The size of the smaller rectangular area defined by this upper boundary is 400�800. The
top 25 rows are cropped to ensure adequate spanning connectivity in the final domain.
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mining Ke,yy� or along the left and right sides of the domain
�when determining Ke,xx�. The buffer zones are necessary to
avoid simulating unrealistic flows near the inflow and out-
flow boundaries. The permeability value assigned to each
buffer zone is the effective permeability of the channel-
matrix system. Since this is the quantity that we would like
to determine, its value is computed in an iterative fashion by
performing multiple flow simulations. For flow in the y di-
rection, we prescribe constant potentials at the top and bot-
tom edges of the larger domain that includes buffer zones;
this results in a gradient that drives flow through the system
in the y direction. Zero-gradient conditions are implemented
to represent impervious boundaries along the other two sides
of the simulation domain. For flow in the x direction, con-
stant potentials are specified along the edge of each buffer
zone to the left and right, and the top and bottom boundaries
are treated as impervious.

We numerically solve Eq. �2�, subject to the aforemen-
tioned boundary conditions, using a finite-difference model.
To obtain an accurate numerical solution that adequately re-
solves the highly nonuniform flow field observed in these
systems, we develop a finely discretized model grid by sub-
dividing each square lattice site into 16 smaller cells. The
resulting computational domain, including the buffer zones,
has over 10�106 nodes. We performed a systematic error
analysis to arrive at this level of spatial discretization. Our
approach was to increase the grid resolution until the calcu-
lated effective permeability �see below for calculation meth-

odology� no longer changed significantly. This exercise was
repeated using numerous permeability fields characterized by
different network geometries. The enhanced spatial discreti-
zation used for the flow simulations has no impact on struc-
tural characteristics of the channel network; therefore, the
values of df and � remain unchanged.

From the fluid-potential distribution obtained by solving
Eq. �2�, we compute the global flow rate �Qx or Qy� through
the system. The y component of effective permeability, Ke,yy,
can be related to the rate Qy using Darcy’s law in the follow-
ing form �e.g., Ref. �26��:

Qy = −
Ke,yy

�
�LxLz�

�P

Ly
, Ke,yy = −

QyLy�

�LxLz��P
, �4�

where �P is the total potential drop across the system in the
y direction �the macroscopic flow direction�, Lx and Ly are
the lattice sizes in the x and y directions, and Lz is the thick-
ness of the section through which flow occurs �taken as
unity�. Similarly, when the applied potential gradient is in the
x direction, Qx is obtained and the effective permeability
term is calculated as

Ke,xx = −
QxLx�

�LyLz��P
. �5�

The K values calculated using Eqs. �4� and �5� provide the
effective permeability for an individual channel-matrix sys-
tem. The key question addressed in this study is the follow-
ing: How does that effective permeability depend on various
system properties, such as geometrical properties of the
channel network, df and �, and the channel-matrix perme-
ability contrast? We approach this question from an upscal-
ing perspective.

B. Permeability upscaling

Numerous permeability upscaling methods have been de-
veloped and applied by investigators in statistical physics,
groundwater hydrology, petroleum engineering, and related
fields �27–30�. The method that we use in this study treats
the upscaling problem as an averaging process. The objective
is to average the local or point-scale permeability values in a
manner that preserves the total flow through the volume of
interest. That is, when the detailed local K distribution is
replaced by the appropriate average value �or tensor compo-
nent values�, the same Q is produced if identical boundary
conditions are applied. The permeability tensor that con-
serves mass is the effective permeability.

Our upscaling framework is based on spatial power aver-
aging �31–33�. According to this method, each component of
effective permeability can be calculated as a power average
of the point-scale permeability values,

Ke,ii = �K�i�1/�i = � 1

V


V

K�x,y��idV�1/�i

, �6�

where V is the averaging volume and i=1 or 2 refers to the
directions x and y in our case. The averaging exponents �x
and �y lie within the interval �−1, 1�. The limits on this
interval correspond to the Wiener bounds

FIG. 2. Example networks showing subset of channels that com-
prise the percolation backbone. The backbone is defined by all
channels that span the entire domain �spanning paths�, connecting
the upper and lower boundaries. Average spanning-path tortuosities
�� values� are 1.45 and 1.72, respectively, in �a� and �b�.
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KH 	 Ke 	 KA, �7�

meaning that each term in Ke is in the range bounded by the
harmonic mean KH and arithmetic mean KA of the local per-
meabilities. For our binary channel-matrix systems, a simpler
form of Eq. �6� is

Ke,ii = �fmKm
�i + fcKc

�i�1/�i, �8�

where Km is the matrix permeability, Kc is the channel per-
meability, and fm and fc are the respective volume fractions
occupied by each phase �fm+ fc=1�.

For a given permeability field, the optimal value of � will
depend on the spatial distribution of local K values �29�.
Instructive are two end-member hypothetical models, which
have known � values and involve fluid flow through 2D
systems with perfectly layered media. When flow is parallel
to the layering, the effective permeability is simply the arith-
metic mean of the individual layer permeabilities, which cor-
responds to �=1. When flow is normal to the layering, the
effective permeability is given by the harmonic mean, corre-
sponding to �=−1. The effective permeability is lower in the
latter example because all of the fluid migrating through that
system must traverse the least permeable layer�s�. Conse-
quently, the Ke value will be biased towards the lowest indi-
vidual layer K. One other noteworthy 2D case is a perme-
ability field where the log K distribution is described by a
statistically homogeneous, multivariate Gaussian random
function. The Ke in this case is the geometric mean KG
�34,35�, which corresponds to � near zero in Eq. �6�
�lim�→0=KG�.

In the next section of this paper, we develop a predictive
model that facilitates accurate determination of the averaging
exponents �and therefore Ke� without resorting to exhaustive
numerical simulation. More importantly, we demonstrate the
dependence of the averaging exponent on salient properties
that characterize each channel-matrix system. For this, we
first need to calculate the observed values of �x and �y that
yield the correct effective permeability for each system. We
accomplish this by performing a flow simulation, calculating
Ke,ii using Eq. �4� or �5�, and then solving the following
optimization problem:

min
�i��−1,1�

���fmKm
�i + fcKc

�i�1/�i − Ke,ii�2� . �9�

By focusing on the �i value and relating it to the end-
member permeabilities KH and KA, we consider how the av-
eraging process is sensitive to key properties that distinguish
our channel-matrix systems. Some previous investigators
have noted that the averaging exponent is related to the de-
gree of flow channeling �see Ref. �5� for a recent example�.
This is an important observation that informs our interpreta-
tion of the numerical results presented in Sec. IV. In essence,
as the flow becomes more channelized, there is less sampling
of the low-permeability matrix material, and therefore the
appropriate average permeability increases towards the arith-
metic mean ��i assumes its maximum value of 1 at Ke,ii
=KA�.

IV. RESULTS

The results presented in this paper are based on flow
simulations conducted for 150 distinct channel-matrix sys-

FIG. 3. Behavior of the averaging exponent �y as a function of
permeability contrast. Each point corresponds to an observed value
of �y for an individual channel-matrix system �obtained by solving
Eq. �9��. Points represented by the same symbol are from systems
characterized by approximately equal df and � values �i.e., the only
significant difference within each grouping of points is the specified
permeability contrast�. Best-fit lines have an exponential form. �a�
Results for systems with relatively high channel density �df

�1.41�. �b� Results for medium-density systems �df �1.27�. �c�
Results for low-density systems �df �1.16�.
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tems. Each system is characterized by a unique set of values
for the key variables, which are the channel-matrix perme-
ability contrast and the geometric properties df and �. In the
first part of this section, we focus on the component of ef-
fective permeability in the y direction, which corresponds to
the primary spanning direction of the anisotropic channel
networks. An understanding of Ke,yy is particularly important
since preferential, rapid transport of fluids and chemicals is
most likely to occur when the macroscopic gradient roughly
coincides with the channel-spanning direction. We investi-
gate the dependence of the averaging exponent �y on each of
the three characteristic properties. After describing these de-
pendencies in a quantitative manner, we then develop a pre-
dictive relationship for �y and use that relationship to calcu-
late �y and Ke,yy for all 150 channel-matrix systems. At the
end of this section, we note the main controls on Ke,xx and
discuss the behavior of the anisotropy ratio Ke,xx /Ke,yy with
variations in the system properties.

The permeability contrast is defined using the ratio
Km /Kc. We fix the matrix permeability and vary the channel
permeability to obtain the desired K contrast for each
channel-matrix system. We consider a range of Kc values
spanning two orders of magnitude. Within that range, the
specific Km /Kc ratios that we prescribe are 0.005, 0.01, 0.05,
0.1, and 0.5. Smaller values of the Km /Kc ratio correspond to

more extreme permeability contrasts. At Km /Kc=0.005, for
example, the channel permeability is 200 times greater than
the matrix permeability.

Figure 3 shows the response of �y to variations in the
permeability contrast. Results are presented for a representa-
tive subset of the 150 systems. The simulation results reveal
an exponential relationship. We note that the averaging ex-
ponent scales as

�y � exp��u��Km/Kc�� , �10�

where u yields a negative value and is reasonably approxi-
mated using a power law of the form u���=
�� �
 and � are
constants, 
�0,�0�.

As the channel-matrix permeability contrast becomes
more extreme, fluid flow is increasingly focused along the
channels. This effect explains the trend of increasing �y with
decreasing Km /Kc shown in Fig. 3. The enhanced channeling
means that less of the flow occurs within the low-
permeability matrix. When matrix throughflow is reduced
relative to the magnitude of flow in the channels, �y in-
creases towards 1, its maximum theoretical value.

Next, we consider the dependence of �y on df, the fractal
dimension of the channel network. The network development
method used in this study, which involves the pruning of

FIG. 4. Behavior of �y as a function of network fractal dimension. Points represented by the same symbol are from systems characterized
by the same Km /Kc ratio and approximately equal � values �i.e., the only significant difference within each grouping of points is the df

value�. Straight lines represent the best linear fit. �a�–�d� show results for systems with differing permeability contrasts: �a� Km /Kc=0.005,
�b� Km /Kc=0.05, �c� Km /Kc=0.1, and �d� Km /Kc=0.5.
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selected channel segments according to a controllable thresh-
old stream order, allows us to generate multiple networks
with approximately the same spanning-path tortuosity �, but
different df values �Sec. II�. As a result, we are able to sys-
tematically investigate the sensitivity of �y to variations in df
only. The results presented in Fig. 4 indicate a strong linear
dependence on the df value. As df increases, meaning that a
larger fraction of the domain is occupied by channels, the
value of the averaging exponent decreases. Retaining addi-
tional nonspanning channel segments results in a more dif-
fuse �i.e., less channelized� flow field. This is a consequence
of the imposed macroscopic flow direction, coupled with the
particular fractal network geometry that we study. In a sense,
all high-permeability channels throughout the domain have a
tendency to “collect” the flow. Given the applied potential
gradient, this effect can induce significant fluid flow through
the matrix, particularly when a large number of low-order
channels are present and serve as collectors.

Figure 5 shows the behavior of �y as a function of the
average spanning-path tortuosity �. Again, the functional re-
lationship is linear. As the tortuosity increases, the value of
the averaging exponent decreases. Interpretation of this result
is aided by the following insight. At very high tortuosities,
we would expect networks characterized by sinuous channels
that migrate relatively large distances in the x direction com-
pared to the distance covered in the spanning �y� direction.

Given the applied boundary conditions which force flow in
the y direction, this hypothetical high-tortuosity system re-
sembles a layer-cake model where flow is normal to the lay-
ering �Ke=KH and �=−1 in that case�. The averaging expo-
nent is lower �toward the harmonic mean� at high tortuosities
because a significant amount of the flow is being forced
through the less permeable matrix material. At low tortuosi-
ties, channels are aligned more directly in the macroscopic
gradient direction and the fluid tends to remain in those high-
permeability features.

Another interesting result gleaned from inspection of Fig.
5 is that the averaging exponent is most sensitive to � when
the specified permeability contrast is close to 1 �e.g., Fig.
5�d��. When the channel permeability is much larger than the
matrix permeability �Km /Kc�1�, �y is quite sensitive to df

but only minimally influenced by the � value �Fig. 5�a��.
One other important geometrical property that we have

not yet addressed is the number of distinct spanning paths on
the network. The frequency and spacing of high-permeability
spanning paths clearly will have a significant impact on the
flow dynamics. We find the number of seeds to be a reliable
measure that captures this effect. Recall that we initiate the
invasion percolation model using multiple seed locations, re-
sulting in channel networks that consist of multiple treelike
structures �Fig. 1�. When more seeds are used to initiate net-
work growth, there will be a higher frequency of spanning

FIG. 5. Behavior of �y as a function of average spanning-path tortuosity. Points represented by the same symbol are from systems
characterized by the same Km /Kc ratio and approximately equal df values �i.e., the only significant difference within each grouping of points
is the � value�. Straight lines represent the best linear fit. �a�–�d� show results for systems with differing permeability contrasts: �a�
Km /Kc=0.005, �b� Km /Kc=0.05, �c� Km /Kc=0.1, and �d� Km /Kc=0.5.
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paths in the resulting domain. The availability of such paths
facilitates the channeling of fluid flow. Therefore, the aver-
aging exponent should increase with the number of seeds.
Indeed, this is what our flow simulations have revealed. We
considered 75 two-seed systems and 75 four-seed systems.
For similar values of Km /Kc, df, and �, the �y and Ke,yy
values are consistently higher in the channel-matrix systems
that contain four-seed networks.

Based on the scaling behavior described by Eq. �10� and
the additional linear dependencies highlighted in Figs. 4 and
5 ��y �1/df and �y �1/��, we developed a model to predict
the value of the averaging exponent using known values of
Km /Kc, df, and �. Application of this simple nonlinear regres-
sion model resulted in strong agreement between predicted
and observed values of �y over the entire range of the data;
the overall r-squared value was 0.988. We then used the
predicted values of �y to calculate a predicted Ke,yy �Eq. �8��
for each channel-matrix system. Comparison of K̂e,yy /KG and

Ke,yy /KG for each system, where K̂e,yy denotes the predicted
value, resulted in an r-squared value of 0.994. We normalize
by the geometric mean to obtain a dimensionless measure of
the effective permeability.

Thus far, we have discussed the factors that control effec-
tive permeability when the applied potential gradient is in the
y direction, the network-spanning direction. We now con-
sider the component of effective permeability in the x direc-
tion. The same general approach discussed previously for the
y direction was used to determine values of Ke,xx and �x for
all 150 channel-matrix systems.

The averaging exponent �x exhibits the same exponential
dependence on Km /Kc that was observed for the y direction.
That is, the scaling of �x with respect to permeability con-
trast is also described by the relationship given in Eq. �10�.
However, the � constant used in the estimation of u is nega-
tive when considering �x. The sensitivity to average
spanning-path tortuosity is different in each direction.
Whereas �y decreases with increasing �, �x increases with
increasing �. This result is easily explained using the geo-
metric argument presented earlier. At high tortuosities, the
sinuous channels will provide convenient migration path-
ways for fluid flow in the x direction. Therefore, with in-
creasing tortuosity, less of the flow is forced through the
matrix, and the Ke,xx value increases toward the arithmetic
mean. At low tortuosities, a greater degree of matrix through-
flow is required. The �x value demonstrates only a weak
sensitivity to the fractal dimension df. In fact, we no longer
observe a monotonic relationship between the averaging ex-
ponent and df for the x direction. At large permeability con-
trasts, �x decreases approximately linearly with increasing
df, similar to the result observed for �y. However, for Km /Kc
near 1, there is actually a slight increase in the observed �x
with increasing fractal dimension.

Figure 6 shows variations in the anisotropy ratio
Ke,xx /Ke,yy as a function of the permeability contrast and av-
erage spanning-path tortuosity. For most of the systems that
we considered, and particularly for those with low df and �
values, Ke,xx is less than Ke,yy. As shown in Fig. 6, the ratio
Ke,xx /Ke,yy increases with increasing �. This is consistent
with the observed dependencies for the averaging exponents

�i.e., �x increases and �y decreases with increasing ��. For
channel-matrix systems with a relatively low fraction of
channels �low df�, Ke,xx is consistently less than Ke,yy �Fig.
6�a��. However, Ke,xx is sometimes greater than Ke,yy for sys-
tems with moderate to high channel fraction �Figs. 6�b� and

FIG. 6. Anisotropy ratio, Ke,xx /Ke,yy, plotted as a function of the
average spanning-path tortuosity �recall that � is measured in the y
direction�. Points represented by the same symbol are from systems
with the same permeability contrast. �a� Results for systems with
low channel density �df �1.16�. �b� Results for medium-density
systems �df �1.27�. �c� Results for high-density systems �df

�1.41�. The numbers labeling each line in �a� give the Km /Kc ratio
for that set of five points; these ratios also apply to the correspond-
ing sets in �b� and �c�.
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6�c��. When the channel volume fraction is sufficiently large
and the channels are characterized by high tortuosity �recall
that � is measured in the y direction�, there may be less
resistance to flow in the x direction as compared to the span-
ning �y� direction. In particular, the ratio Ke,xx /Ke,yy is likely
to exceed 1 in systems characterized by high df and � values.

V. CONCLUDING REMARKS

Here, we investigated the effective permeability of binary
systems consisting of a branching channel network embed-
ded in a low-permeability matrix. To construct the channel
networks, we used a nonlooping invasion percolation model
modified to implement preferred directional growth factors,
an approach that allowed us to generate numerous networks
with varying geometrical properties. We focused on two key
properties that have a significant and predictable influence on
fluid flow behavior: the fractal dimension and the average
spanning-path tortuosity. In addition to variations in these
network properties, we also evaluated a relatively broad
range of channel-matrix permeability contrasts. Numerical
flow simulations were conducted to determine accurate val-
ues of the effective permeability and power averaging expo-
nents ��i in Eqs. �6�, �8�, and �9�� for each channel-matrix
system; these simulated data were then used to analyze the
dependence of �i on the key system properties.

The effective permeability in our 2D channel-matrix sys-
tems is described by a diagonal tensor �Eq. �3�� for the co-
ordinate axes that we selected. For all but 3 of the 150 sys-
tems evaluated in this study, the component of effective
permeability in the network-spanning direction, Ke,yy, was
between the geometric and arithmetic mean permeability val-
ues, a range corresponding to the interval �0, 1� for the av-
eraging exponent �y. We determined the following specific
dependencies for the averaging exponent: �i� �y increases

exponentially as the channel permeability is increased rela-
tive to the matrix permeability �the scaling relation for this
exponential dependence is given by Eq. �10��; �ii� �y in-
creases linearly as the fractal dimension of the channel net-
work, df, decreases; and �iii� �y increases linearly as the
average spanning-path tortuosity � decreases. These depen-
dencies are clear over the range of system property values
that we considered. We also studied the component of effec-
tive permeability in the x direction, Ke,xx; this value exceeded
the geometric mean permeability in all but 13 of the 150
systems. The corresponding averaging exponent �x increases
in an exponential fashion with increasing channel-matrix
permeability contrast, a relationship similar to the one ob-
served for �y. Unlike in the y direction, �x increases as �
increases. Therefore, the anisotropy ratio Ke,xx /Ke,yy in-
creases with increasing channel tortuosity. The largest aniso-
tropy ratios are observed for systems characterized by high
df and � values.

Our results suggest that the averaging exponent is a useful
dimensionless parameter related to the degree of flow chan-
neling. Consequently, we note that, in addition to providing a
predictive framework for permeability upscaling in structur-
ally heterogeneous fields, application of the spatial power
averaging method can give insight into the nature of the flow
dynamics.
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